Object classification with scikit-learn

Object classification with scikit-learn#

Based on size and shape measurements, e.g. derived using scikit-image regionprops and some sparse ground truth annotation, we can classify objects. A common algorithm for this are Random Forest Classifiers. A commonly used implementation is available as scikit-learn Random Forest Classifier.

See also

from sklearn.ensemble import RandomForestClassifier

from skimage.io import imread
from pyclesperanto_prototype import imshow, replace_intensities, relabel_sequential
from skimage.filters import threshold_otsu
from skimage.measure import label, regionprops
from skimage.segmentation import clear_border
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Our starting point are an image, a label image and some ground truth annotation. The annotation is also a label image where the user was just drawing lines with different intensity (class) through small objects, large objects and elongated objects.

# load and label data
image = imread('../../data/blobs.tif')
labels = label(image > threshold_otsu(image))
annotation = imread('../../data/label_annotation.tif')

# visualize
fig, ax = plt.subplots(1,3, figsize=(15,15))
imshow(image, plot=ax[0])
imshow(labels, plot=ax[1], labels=True)
imshow(image, plot=ax[2], continue_drawing=True)
imshow(annotation, plot=ax[2], alpha=0.7, labels=True)
../_images/4771204a75384cd905188352c53c1d261dfcde01e5d9857b05fc310bb759f42f.png

Feature extraction#

The first step to classify objects according to their properties is feature extraction.

stats = regionprops(labels, intensity_image=image)

# read out specific measurements
label_ids =          np.asarray([s.label for s in stats])
areas =              np.asarray([s.area for s in stats])
minor_axis_lengths = np.asarray([s.minor_axis_length for s in stats])
major_axis_lengths = np.asarray([s.major_axis_length for s in stats])

# compute additional parameters
aspect_ratios = major_axis_lengths / minor_axis_lengths
/var/folders/p1/6svzckgd1y5906pfgm71fvmr0000gn/T/ipykernel_18924/1513904267.py:10: RuntimeWarning: invalid value encountered in true_divide
  aspect_ratios = major_axis_lengths / minor_axis_lengths

We also read out the maximum intensity of every labeled object from the ground truth annotation. These values will serve to train the classifier.

annotation_stats = regionprops(labels, intensity_image=annotation)

annotated_class = np.asarray([s.max_intensity for s in annotation_stats])

Data wrangling#

To look at the data before it is fed to the training, we visualize it as pandas DataFrame. Note: The rows with annotated_class=0 correspond to labels that have not been annotated.

data = {
    'label': label_ids,
    'area': areas,
    'minor_axis': minor_axis_lengths,
    'major_axis': major_axis_lengths,
    'aspect_ratio': aspect_ratios,
    'annotated_class': annotated_class
}

table = pd.DataFrame(data)

# show only first 5 rows
table.iloc[:5]
label area minor_axis major_axis aspect_ratio annotated_class
0 1 433 16.819060 34.957399 2.078439 0.0
1 2 185 11.803854 21.061417 1.784283 0.0
2 3 658 28.278264 30.212552 1.068402 2.0
3 4 434 23.064079 24.535398 1.063793 0.0
4 5 477 19.833058 31.162612 1.571246 0.0

From that table, we extract now a table that only contains the annotated rows/labels.

annotated_table = table[table['annotated_class'] > 0]
annotated_table
label area minor_axis major_axis aspect_ratio annotated_class
2 3 658 28.278264 30.212552 1.068402 2.0
6 7 81 9.239435 11.153514 1.207164 2.0
10 11 501 24.403675 26.232105 1.074924 3.0
14 15 448 21.751312 26.272749 1.207870 3.0
17 18 425 19.335056 28.075209 1.452037 3.0
21 22 412 21.819832 24.135300 1.106118 3.0
26 27 676 24.623036 36.525858 1.483402 1.0
30 31 610 17.433716 48.005150 2.753581 1.0
31 32 14 4.120630 4.208834 1.021406 2.0
32 33 641 21.042345 40.781012 1.938045 1.0
35 36 22 4.355578 6.495072 1.491208 2.0
37 38 902 21.741393 54.785426 2.519867 1.0

As we do not want to use all columns for training, we now select the right columns. It is recommended to write a short convenience function select_data for this, because we will reuse it later for prediction.

def select_data(table):
    return np.asarray([
        table['area'],
        table['aspect_ratio']
    ])

training_data = select_data(annotated_table).T
training_data
array([[658.        ,   1.06840194],
       [ 81.        ,   1.20716407],
       [501.        ,   1.07492436],
       [448.        ,   1.20786966],
       [425.        ,   1.45203663],
       [412.        ,   1.1061176 ],
       [676.        ,   1.48340188],
       [610.        ,   2.75358106],
       [ 14.        ,   1.02140552],
       [641.        ,   1.93804502],
       [ 22.        ,   1.4912077 ],
       [902.        ,   2.51986728]])

We also extract the annotation from that table and call it ground_truth.

ground_truth = annotated_table['annotated_class'].tolist()
ground_truth
[2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 1.0, 1.0, 2.0, 1.0, 2.0, 1.0]

Classifier Training#

Next, we can train the Random Forest Classifer. It needs training data and ground truth in the format presented above.

classifier = RandomForestClassifier(max_depth=2, n_estimators=10, random_state=0)
classifier.fit(training_data, ground_truth)
RandomForestClassifier(max_depth=2, n_estimators=10, random_state=0)

Prediction#

To apply a classifier to the whole dataset, or any other dataset, we need to bring the data into the same format as used for training. We can reuse the function select_data for that. Furthermore, we need to drop rows from our table where not-a-number (NaN) values appeared (read more).

table_without_nans = table.dropna(how="any")

all_data = select_data(table_without_nans).T
all_data
array([[433.        ,   2.0784395 ],
       [185.        ,   1.78428301],
       [658.        ,   1.06840194],
       [434.        ,   1.06379267],
       [477.        ,   1.57124594],
       [285.        ,   1.15397362],
       [ 81.        ,   1.20716407],
       [278.        ,   1.39040997],
       [231.        ,   1.14134293],
       [ 30.        ,   4.64290752],
       [501.        ,   1.07492436],
       [660.        ,   1.33770096],
       [ 99.        ,   1.27265076],
       [228.        ,   1.1427708 ],
       [448.        ,   1.20786966],
       [401.        ,   2.50541908],
       [520.        ,   1.18241662],
       [425.        ,   1.45203663],
       [271.        ,   1.34918562],
       [350.        ,   1.16890653],
       [159.        ,   1.22661614],
       [412.        ,   1.1061176 ],
       [426.        ,   1.81249164],
       [260.        ,   1.15413724],
       [506.        ,   1.6790716 ],
       [289.        ,   1.13174859],
       [676.        ,   1.48340188],
       [175.        ,   1.7693589 ],
       [361.        ,   1.22276182],
       [545.        ,   1.22505758],
       [610.        ,   2.75358106],
       [ 14.        ,   1.02140552],
       [641.        ,   1.93804502],
       [195.        ,   1.14814639],
       [593.        ,   1.08971368],
       [ 22.        ,   1.4912077 ],
       [268.        ,   1.29513144],
       [902.        ,   2.51986728],
       [473.        ,   1.74526337],
       [239.        ,   1.21436236],
       [167.        ,   1.29262079],
       [413.        ,   1.37572589],
       [415.        ,   1.2468234 ],
       [244.        ,   1.13831252],
       [377.        ,   1.28619722],
       [652.        ,   1.11512228],
       [379.        ,   1.14903134],
       [578.        ,   1.05037771],
       [ 69.        ,   3.02058993],
       [170.        ,   1.36058208],
       [472.        ,   2.04509462],
       [613.        ,   1.35438231],
       [543.        ,   1.3209039 ],
       [204.        ,   2.23080499],
       [555.        ,   1.07333913],
       [858.        ,   1.56519017],
       [281.        ,   1.32328162],
       [215.        ,   1.30875672],
       [  3.        ,   1.73205081],
       [ 81.        ,   3.13450027],
       [ 90.        ,   4.18288936],
       [ 53.        ,   2.92386162],
       [ 49.        ,   4.45617521]])

We can then hand over all_data to the classifier for prediction.

table_without_nans['predicted_class'] = classifier.predict(all_data)
print(table_without_nans['predicted_class'].tolist())
[1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 2.0, 3.0, 2.0, 1.0, 3.0, 3.0, 2.0, 2.0, 3.0, 1.0, 3.0, 3.0, 3.0, 3.0, 2.0, 3.0, 1.0, 3.0, 3.0, 3.0, 3.0, 1.0, 3.0, 3.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 1.0, 3.0, 1.0, 3.0, 3.0, 1.0, 3.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0]
/var/folders/p1/6svzckgd1y5906pfgm71fvmr0000gn/T/ipykernel_18924/549567337.py:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  table_without_nans['predicted_class'] = classifier.predict(all_data)

We can then merge the table containing the predicted_class column with the original table. In the resulting table_with_prediction, we still need to decide how to handle NaN values. It is not possible to classify those because measurements are missing. Thus, we replace the class of those with 0 using fillna.

# merge prediction with original table
table_with_prediction = table.merge(table_without_nans, how='outer', on='label')
# replace not predicted (NaN) with 0
table_with_prediction['predicted_class'] = table_with_prediction['predicted_class'].fillna(0)

table_with_prediction
label area_x minor_axis_x major_axis_x aspect_ratio_x annotated_class_x area_y minor_axis_y major_axis_y aspect_ratio_y annotated_class_y predicted_class
0 1 433 16.819060 34.957399 2.078439 0.0 433.0 16.819060 34.957399 2.078439 0.0 1.0
1 2 185 11.803854 21.061417 1.784283 0.0 185.0 11.803854 21.061417 1.784283 0.0 1.0
2 3 658 28.278264 30.212552 1.068402 2.0 658.0 28.278264 30.212552 1.068402 2.0 2.0
3 4 434 23.064079 24.535398 1.063793 0.0 434.0 23.064079 24.535398 1.063793 0.0 3.0
4 5 477 19.833058 31.162612 1.571246 0.0 477.0 19.833058 31.162612 1.571246 0.0 3.0
... ... ... ... ... ... ... ... ... ... ... ... ...
59 60 1 0.000000 0.000000 NaN 0.0 NaN NaN NaN NaN NaN 0.0
60 61 81 5.920690 18.558405 3.134500 0.0 81.0 5.920690 18.558405 3.134500 0.0 1.0
61 62 90 5.369081 22.458271 4.182889 0.0 90.0 5.369081 22.458271 4.182889 0.0 1.0
62 63 53 5.065719 14.811463 2.923862 0.0 53.0 5.065719 14.811463 2.923862 0.0 1.0
63 64 49 3.843548 17.127524 4.456175 0.0 49.0 3.843548 17.127524 4.456175 0.0 1.0

64 rows × 12 columns

From that table, we can extract the column containing the prediction and use replace_intensities to generate a class_image. The background and objects with NaNs in measurements will have value 0 in that image.

# we add a 0 for the class of background at the beginning
predicted_class = [0] + table_with_prediction['predicted_class'].tolist() 
class_image = replace_intensities(labels, predicted_class)
imshow(class_image, colorbar=True, colormap='jet')
../_images/ecb14ca894706371b4dd9d6085934f5ed36eca2421597ccd943a5be51f246e01.png